

EVALUATION OF IMAGE SEGMENTATION AND OBJECT
RECOGNITION ALGORITHMS FOR IMAGE PARSING

SEPTEMBER 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-203

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2013-203 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

AMANDA LANNIE MICHAEL J. WESSING
Work Unit Manager Deputy Chief, Information Intelligence
 Systems and Analysis Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2012 – JAN 2013
4. TITLE AND SUBTITLE

EVALUATION OF IMAGE SEGMENTATION AND OBJECT
RECOGNITION ALGORITHMS FOR IMAGE PARSING

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
AFOSR MINI GRANT

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Amanda Lannie

5d. PROJECT NUMBER
E1RA

5e. TASK NUMBER
AL

5f. WORK UNIT NUMBER
SA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RIED
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIED
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2013-203

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2013-2741
Date Cleared: 10 Jun 2013

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The goal of this effort is to implement several algorithms for image segmentation and object recognition, unify the
algorithms, and determine which approach works the best based on certain measures. Based on the number of
segments produced by the segmentation implementations, there is over-segmentation or incorrect segmentation
(according to a human’s perception). The performance of the segmentation could have influenced the results of the
object recognition. The results for precision, recall, and F-measure indicate that the best approach to use for image
segmentation is Sobel edge detection and to use Canny or Sobel for object recognition. The process for this report
would not work for a warfighter or analyst. It has poor performance. Additionally, its lack of variety among the algorithms
reduces the chance of correctly labeling the objects in an image.

15. SUBJECT TERMS
Segmentation, object recognition, computer vision

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

33

19a. NAME OF RESPONSIBLE PERSON
AMANDA LANNIE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

LIST OF FIGURES .. ii
LIST OF TABLES .. ii
1. SUMMARY ... 1

2. INTRODUCTION ... 1

2.1. Sobel Edge Detection ... 3

2.2. Canny Edge Detection .. 3

2.3. Mean Shift Filtering ... 4

2.4. Scale Invariant Feature Transform (SIFT) ... 5

2.5. Speeded Up Robust Features (SURF) .. 6

3. MOTIVATION ... 8

4. METHODS, ASSUMPTIONS, AND PROCEDURES ... 9

5. RESULTS AND DISCUSSION ...11

6. CONCLUSION ... 14

7. FUTURE WORK .. 15

8. BIBLIOGRAPHY ... 16

APPENDIX ... 18

LIST OF ACRONYMS ... 28

ii

LIST OF FIGURES

Figure 1. Original image, test-15.png in test set [16] .. 12
Figure 2. Canny edge detection applied to test-15.png .. 12
Figure 3. Mean-shift applied to test-15.png ... 13
Figure 4. Sobel edge detection applied to test-15.png ... 13
Figure 5. motorbikes002.png From Test Set .. 18
Figure 6. motorbikes044-rt.png From Test Set .. 18
Figure 7. motorbikes048-rt.png From Test Set .. 19
Figure 8. test-0.png From Test Set ... 19
Figure 9. test-31.png From Test Set ... 19
Figure 10. 0002.png From Training Set ... 20
Figure 11. 0025.png From Training Set ... 20
Figure 12. 0046.png From Training Set ... 21
Figure 13. 29091-sml.png From Training Set .. 21
Figure 14. 354002-sml.png From Training Set .. 21
Figure 15. bike_002.png From Training Set .. 22
Figure 16. bike_005.png From Training Set .. 22
Figure 17. bike_008.png From Training Set .. 23
Figure 18. bike_014.png From Training Set .. 23
Figure 19. car-pic40-sml.png From Training Set ... 24
Figure 20. carsgraz_001.png From Training Set ... 24
Figure 21. carsgraz_006.png From Training Set ... 25
Figure 22. person_002.png From Training Set .. 25
Figure 23. person_005.png From Training Set .. 26
Figure 24. person_020.png From Training Set .. 26
Figure 25. person_048.png From Training Set .. 27

LIST OF TABLES

Table 1. Categories for Image Segmentation [6] ... 2
Table 2. Examples of Challenges in Computer Vision .. 2
Table 3. PASCAL VOC Dataset 2005 Statistics, Dataset 1 .. 10
Table 4. Precision, Recall, and F-measure for All Combinations Using Loose Labeling 14
Table 5. Performance ... 14

Approved for Public Release; Distribution Unlimited.
1

1. SUMMARY

The military collects massive amounts of imagery and video every day. The amount of
data makes it impossible for a warfighter/analyst to review all of it. Image parsing algorithms
alleviate this burden on warfighters and analysts by reducing the manual labor of labeling each
image. Image parsing is the splitting of an image into parts and labeling them. Image
segmentation and object recognition make image parsing possible. Image segmentation is the
partitioning of the image into parts of significance. The specificity of the portioning depends on
the approach. For instance, one approach might segment out a car in an image while another
approach may see wheels, windows, car body, etc. Object recognition is the identification of the
objects in the image where an object is anything that falls into the category noun (person, place,
or thing). The vocabulary to describe the objects is usually known a priori and associated with a
set of features like color, shape, or edges. To determine the similarity of the features one can use
methods like classification or matching. Currently, researchers do not explain their reasoning for
choosing their image segmentation and object recognition methods or their focus is only one area
of the parsing process. The goal of this effort is to implement several algorithms for image
segmentation and object recognition, unify the algorithms, and determine which approach works
the best based on certain measures. Based on the number of segments produced by the
segmentation implementations, there is over-segmentation or incorrect segmentation (according
to a human’s perception). The performance of the segmentation could have influenced the
results of the object recognition. The results for precision, recall, and F-measure indicate that the
best approach to use for image segmentation is Sobel edge detection and to use Canny or Sobel
for object recognition. The process for this report would not work for a warfighter or analyst. It
has poor performance. Additionally, its lack of variety among the algorithms reduces the chance
of correctly labeling the objects in an image. Nevertheless, perhaps with some more
experimentation like implementing other methods, the image segmentation and object
recognition of image parsing itself could be useful.

2. INTRODUCTION

 Image segmentation is the sectioning of an image into meaningful parts; the amount of
segmentation on an image depends on the problem. It is also one field in the subject of computer
vision. Thus, it has its own set of methods of implementation and issues. Not only are there
several categories for segmenting (see Table 1), there are many implementations for each
category. For example, the concept of edge detection has within it Prewitt mask ([1], [2]), Sobel
mask ([2], [3]), Marr-Hildreth edge detector ([2], [4]), Canny edge detector ([2], [5]), and those
are only some of the possibilities. Image segmentation is nontrivial. A computer has no concept
of when to stop dividing an image because it has no idea the specificity (very generic to very
detailed) of the segmentation the user has in mind. The computer has to go by the algorithm and
parameters given in the code to know when to stop segmenting an image. Textures can
complicate the process; for instance, if the approach is edge detection on an image of a couch
with a print for the upholstery, then a computer would likely not identify the couch.

Approved for Public Release; Distribution Unlimited.
2

Additionally, no implementation is perfect. Edge, line, and point detection can miss edges, lines,
and points, respectively. These are only some of the issues when dealing with segmentation.

Object recognition is the identifying of objects (person, place, or thing) in an image and is
no easy feat. Despite the abundance of approaches, none are flawless. Most require some
manual labor because there is a need for a priori knowledge to give objects their labels. Some
additional challenges to the process are occlusion, lighting, and views, see Table 2. To see
images of these challenges see [7]. The more objects that are in the picture, the more objects are
overlapping and less of the whole object is available therefore making approaches that use
matching have lesser performance. Lighting and the view make object recognition difficult
because they could be different from that of the contents of the database. Thus, matching an
object to one in a database becomes difficult whether taking a matching approach (giving a label
to the segment by basing it on the skeleton/structure of the image) or a statistical one.

Table 2. Examples of Challenges in Computer Vision

Challenge Description of Image
Original image The top of a car.
Shifting, scaling, and rotation Picture of the top of the car taken

further away. Additionally, the car has
been moved to the right and put at a 45°
angle.

Lighting change A bright spot on the top of the car
caused by a street light.

Viewpoint change Side view of the car.
Partial occlusion A tree hanging over par of the top of

the car and thus blocking part of it.
Clutter The top of the car surrounded by trees

and other vehicles.

Analysts are already overwhelmed with images and video data to the point that

processing it all is not possible. Therefore, it would be best to invest in observing image
segmentation and object recognition of image parsing, crucial parts of any assisting application,
and consider only methods that are automatic. By evaluating image parsing's object recognition
and image segmentation and discovering the weaknesses, it would indicate areas in need of
improvement.

Table 1. Categories for Image Segmentation [6]
Thresholding Partial differential equation-based
Clustering Graph partitioning
Compression-based Watershed transformation
Histogram-based Model based
Edge detection Multi-scale
Region growing Semi-automatic
Split and Merge

Approved for Public Release; Distribution Unlimited.
3

2.1. Sobel Edge Detection

Sobel is a well-known method of edge detection and achieving the result is relatively easy to
understand. A black and white image has convolution done on it in the x and y directions using

kernels 𝐺𝐺 = �
−1 0 1
−2 0 2
−1 0 1

� and 𝐺𝐺 = �
−1 −2 −1
0 0 0
1 2 1

�. The operator to use in the x direction is Gx

and Gy for the y direction. The twos in the operators provide some image smoothing. 𝐺 =
 �𝐺𝐺2 + 𝐺𝐺2 summarizes the next steps. Using the results of the convolutions, for each pixel, the
values are squared and summed. The sum’s square root is calculated; this is the gradient magnitude
for the pixel. Pixels are part of an edge if their value is non-zero. The strongest response to this
process is in the vertical and horizontal directions; therefore, vertical and horizontal edges would be
most prominent.

The result of using Sobel is an image with bounded regions. Sobel edge detection is used as
a method of image segmentation since each of the bounded regions is a segment.

2.2. Canny Edge Detection

Canny is a common method of edge detection. From a programmer’s standpoint, the

process can be described in four steps: apply Gaussian blur, find gradient magnitudes, perform
non-maximum suppression, and hysteresis. Applying the Gaussian filter to the entire image
results in a blurred version of the original. This step reduces noise. The second step of finding
the gradient magnitudes is applying Sobel edge detection to the blurred image. An alternative to
Sobel to compute the gradient is the Prewitt mask (another gradient operator). Finding the edges
using the gradient makes the lines thicker around the local maxima. Non-maxima suppression
suppresses pixels that are not the maximum magnitudes from the previous step to reduce the

//C:\OpenCV231\samples\cpp\tutorial_code\ImgTrans\Sobel_Demo.cpp

int scale = 1;//scale factor for the computed derivative values; by default no
scaling is applied
int delta = 0;//value that is added to the results prior to storing them in dst
int ddepth = CV_8U;//output image depth, type of the image
Mat grad, gradX, gradY, absGradX, absGradY;
//Sobel parameters: src, dst, ddepth, xorder, yorder, ksize, scale (optional),
delta (optional), borderType
//src is the original image in black and white
//dst is the destination for the results
//ksize is the size of the extened Sobel kernel (1,3,5,7)
//xorder & yorder is derivative of respective direction
//borderType is pixel extrapolation method
Sobel(src, gradX, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(gradX, absGradX);//scales, computes absolute values, and con-
verts result to 8-bit
Sobel(src, gradY, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(gradY, absGradY);
addWeighted(absGradX, 0.5, absGradY, 0.5, 0, grad);

Approved for Public Release; Distribution Unlimited.
4

thickness by using gradient. The final step is hysteresis, which comes from the area of physics.
[8] defines hysteresis as increasing the total magnetic field to a maximum when atoms are
aligned though the total field lags behind the magnetizing field, and when the intensity of the
magnetizing field is zero, some of the field remains. Canny uses this idea; hysteresis uses two
thresholds; this will help avoid the appearance of a broken line. Anything above the high
threshold marks the pixel as a strong edge. Anything between the two thresholds is a weak edge.
Finally, nothing below the low threshold is an edge. Hysteresis looks at pixels connected to
strong edges and added to the actual edge if they are a strong edge or weak edge. The additions
continue until the value of the pixel is less than the low threshold.

The product of applying Canny edge detection to an image is another image with
bordered sections. These sections are the segments; hence, it is a method of image segmentation.

2.3. Mean Shift Filtering

Mean shift filtering smoothes the image and thereby blurring it. This removes noise in

the image. Mean shift filtering preserves discontinuity; thus, the smoothing near edges is
reduced [9]. Blurring the image creates a better image for segmentation in that there would be
fewer segments.

The function and approach we applied is pyrMeanShiftFilter. The function uses the
filtering step of the mean shift segmentation algorithm. For every pixel, it is the center of some
sized window, this is a parameter given to the function. (The function takes a radius for the
spatial component and for the color.) Within that window, the average spatial values and color
values are calculated. The window shifts to the new spatial coordinates where the new values
become the center. The computation of the spatial and color values is continuous until
convergence. After the last iteration, the initial pixel becomes the last iteration’s color
component average. The result of this process is a polarized version of the original image.

//C:\OpenCV231\samples\cpp\tutorial_code\ImgTrans\CannyDetector_Demo.cpp

double threshold1 = 75;//first threshold for hysteresis
double threshold2 = 150;//second threshold for hysteresis
Mat out;//destination for the result
//3 is the size of the Sobel operator, true is use the actual distance formula
(false is some form of distance formula but calculation is faster)
Canny(src, out, threshold1, threshold2, 3, true);

//C:\OpenCV231\samples\cpp\meanshift_segmentation.cpp

int spatialRad = 10;//spatial window radius
int colorRad = 10;//color window radius
int maxPyrLevel = 1;//max level of pyramid for the segmentation
Mat out; //destination for the result
pyrMeanShiftFiltering(src, out, spatialRad, colorRad, maxPyrLevel);//does mean
shift filtering

Approved for Public Release; Distribution Unlimited.
5

2.4. Scale Invariant Feature Transform (SIFT)

 David Lowe created SIFT in 1999 at the University of British Columbia. He had it
patented in 2004. SIFT looks at local features, which helps when doing object recognition on
images that are cluttered or have partial occlusion.

Scales and octaves construct a scale space. A scale is images of the same size but
different (incremental) blurriness and an octave is images of different sizes (size is halved each
time). Therefore, a scale space is a scale for multiple octaves. The convolution of the image and
the Gaussian operator creates the blurred images. The second step is Laplacian of Gaussian
(LoG) approximation, which is the calculation of the differences of the images in the scale for
each octave. Using approximation of LoG saves computation/processing time. By picking out
the maximums from the images resulting from the differences of images, it creates a set of key
points. Some of these points are not useful, so the ones representing low contrast features and
edges are removed from the set. Assigning each key point an orientation is the next step. This
involves creating a histogram of the magnitude and orientation of the gradient. The histogram
indicates the highest peaks or best gradient direction and assigns that direction to the key point.
This orientation provides rotation invariance [10]. The final step is the generation of the features
from the key points.

OpenCV uses Euclidean distance to match the key points and has the option to use
Manhattan distance. Additional filtering can be done to create a “better” set of matches; for
instance, OpenCV’s function radiusMatch would work since a pair is only kept if their distance is
less than a given maximum distance. Another possible way to filter the matches is the following
code:

Approved for Public Release; Distribution Unlimited.
6

2.5. Speeded Up Robust Features (SURF)

By abstracting the process of SURF, it can be described in three steps: feature detection,

descriptor extraction, and matching.
 The Hessian matrix is the basis for the detection of the feature points because of its good
performance in computation time and accuracy [11]. Using the Hessian’s determinant
determines the location and scale. Part of computing Gaussian second order derivatives is using
integral images and like SIFT, LoG approximations. In addition, the computation includes the
use of box filters. The convolution of the Gaussian second order derivatives and the original
image are the elements of the Hessian matrix. The last step of feature detection is the finding of

vector<KeyPoint> sift_AL(Mat &src){
 SIFT siftObj = SIFT();
 Mat src_gray, mask, out;
 mask = Scalar::all(0);
 vector<KeyPoint> keypoints;
 siftObj(src, mask, keypoints);//overloaded function operator
 return keypoints;
}

// C:\OpenCV231\samples\cpp\tutorial_code\features2D\SURF_descriptor.cpp
double sift_cmp(Mat &test, Mat &train){
 //-- Step 1: Detect the keypoints using SIFT Detector
 vector<KeyPoint> testKP = or.sift_AL(test);
 vector<KeyPoint> trainKP = or.sift_AL(train);
 //-- Step 2: Calculate descriptors (feature vectors)
 SiftDescriptorExtractor extractor;
 Mat descriptors_1, descriptors_2;
 extractor.compute(test, testKP, descriptors_1);
 extractor.compute(train, trainKP, descriptors_2);
 //-- Step 3: Matching descriptor vectors with a brute force matcher
 BruteForceMatcher<L2<float>> matcher;
 std::vector<DMatch> matches;
 matcher.match(descriptors_1, descriptors_2, matches);
 if(matches.size() == 0)
 return 0;
 double max_dist = 0; double min_dist = 100;
 //-- Quick calculation of max and min distances between keypoints
 for(int i = 0; i < descriptors_1.rows; i++){
 double dist = matches[i].distance;
 if(dist < min_dist) min_dist = dist;
 if(dist > max_dist) max_dist = dist;
 }
 //-- Draw only "good" matches (i.e. whose distance is less than
2*min_dist)
 //-- radiusMatch can also be used here.
 std::vector<DMatch> good_matches;
 for(int i = 0; i < descriptors_1.rows; i++){
 if(matches[i].distance < 2*min_dist){
 good_matches.push_back(matches[i]);
 }
 }
 return good_matches.size();
}

Approved for Public Release; Distribution Unlimited.
7

the feature points by applying non-maximum suppression and interpolating the maxima of the
determinant.

The descriptor extraction can be summed up in two steps, orientation assignment and
descriptor extraction. Going into further detail, orientation assignment starts with the
computation of the Haar-wavelet responses in the x and y direction, which then uses vectors to
represent the responses [11]. Every slide of the window that sums the values within it creates a
vector. The longest of those vectors determines the orientation. The second step of feature
detection can be broken down into further steps. Centering on the interest point and oriented in
the direction found in the previous step is a square region. That portion splits into smaller
regions. The smaller regions apply the Haar-wavelet in the horizontal and vertical directions
with respect to the orientation of the interest point. The sums of the responses for the subregions
create parts of the feature vectors. The other part of the feature vector includes polarity and
intensity information.

Final step is matching the key points. In OpenCV, Euclidean distance or Manhattan
distance determines if a pair of key points is a match. Adding another layer of filtering to the
previous one could create “better” matches. For example, the code below is one way and
OpenCV offers the function radiusMatch (a pair must have a distance less than a given maximum
distance).

OpenCV’s implementation of SURF takes a value, hessianThreshold (minHessian in code
segment below). According to [12], only features, whose Hessian is larger than the
hessianThreshold are retained by the detector; therefore, the larger the value, the less keypoints
you will get, so a good default value could be from 300 to 500, depending from the image
contrast. Hence, depending on the image, it may be necessary to experiment with the
hessianThreshold.

Approved for Public Release; Distribution Unlimited.
8

3. MOTIVATION

Currently, researchers use image parsing without much explanation of their selection for
approach since that is not the main goal. For instance, the objective of Sudderth et al. in [13]
was to describe scenes using transformed Dirichlet processes. A Dirichlet process is a
distribution over distributions [14]. In other cases, researchers only focus on one area of image
parsing like [3], [5], [11], and [15]. For instance, a paper may focus on improving just image
segmentation or just object recognition. Accordingly, there is little focus on improving the
unified image parsing process.

vector<KeyPoint> surf_AL(Mat &src){
 Mat out;
 int minHessian = 400;
 SurfFeatureDetector detector(minHessian);
 vector<KeyPoint> keypoints;
 detector.detect(src, keypoints);
 return keypoints;
}

// C:\OpenCV231\samples\cpp\tutorial_code\features2D\SURF_descriptor.cpp
double surf_cmp(Mat &test, Mat &train){
 //-- Step 1: Detect the keypoints using SURF Detector
 vector<KeyPoint> testKP = or.surf_AL(test);
 vector<KeyPoint> trainKP = or.surf_AL(train);
 //-- Step 2: Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;
 Mat descriptors_1, descriptors_2;
 extractor.compute(test, testKP, descriptors_1);
 extractor.compute(train, trainKP, descriptors_2);
 //-- Step 3: Matching descriptor vectors with a brute force matcher
 BruteForceMatcher<L2<float>> matcher;
 std::vector<DMatch> matches;
 matcher.match(descriptors_1, descriptors_2, matches);
 if(matches.size() == 0)
 return 0;
 double max_dist = 0; double min_dist = 100;
 //-- Quick calculation of max and min distances between keypoints
 for(int i = 0; i < descriptors_1.rows; i++){
 double dist = matches[i].distance;
 if(dist < min_dist) min_dist = dist;
 if(dist > max_dist) max_dist = dist;
 }
 //-- Draw only "good" matches (i.e. whose distance is less than
2*min_dist)
 //-- radiusMatch can also be used here.
 std::vector<DMatch> good_matches;
 for(int i = 0; i < descriptors_1.rows; i++){
 if(matches[i].distance < 2*min_dist){
 good_matches.push_back(matches[i]);
 }
 }
 return good_matches.size();
}

Approved for Public Release; Distribution Unlimited.
9

 There is no shortage of information on image segmentation and object recognition, and
others use this information to solve this specific problem rather than looking at amalgamating the
two. The focus of this effort will be to look at the integration of those specific algorithms.

4. METHODS, ASSUMPTIONS, AND PROCEDURES

The training and test set of images come from the PASCAL (pattern analysis, statistical
modeling, and computational learning) Visual Objects Challenge (VOC) 2005. VOC 2005’s
training set contains images of motorcycles (from various angles), cars (from the side and rear),
bicycles, and people [16], see APPENDIX. Each test and training image has only one to three
objects to recognize. Each image has an associated annotation file that contains the number of
objects for that image, the correct label for each object, and the coordinates to create a bounding
box around the object, see below:

A few of the files contain errors when it comes to the coordinates of the bounding box and the
process of reading in the annotation files corrects this. It checks that the minimum is less than
the maximum and that the coordinates given do not go outside the bounds of the image. To
reduce processing time, a subset of the images are used; 50 motorcycle images from
ETHZ_motorbike-testset folder (represented as motorbike-test in Table 3) and 50 car images
from UIUC_TestImages folder (labeled test in Table 4) were used as the test set and 100 images

PASCAL Annotation Version 1.00

Image filename : "VOC2005_1/PNGImages/UIUC_TestImages/test-15.png"
Image size (X x Y x C) : 302 x 146 x 1
Database : "The VOC2005 Dataset 1 Database (UIUC)"
Objects with ground truth : 3 { "PAScarSide" "PAScarSide" "PAScarSide" }

Note that there might be other objects in the image
for which ground truth data has not been provided.

Top left pixel co-ordinates : (1, 1)

Details for object 1 (“PAScarSide”)
Original label for object 1 “PAScarSide” : “carSide”
Bounding box for object 1 “PAScarSide” (Xmin, Ymin) – (Xmax, Ymax) : (8, 59) – (107, 98)

Details for object 2 (“PAScarSide”)
Original label for object 2 “PAScarSide” : “carSide”
Bounding box for object 2 “PAScarSide” (Xmin, Ymin) – (Xmax, Ymax) : (106, 59) – (205, 98)

Details for object 3 (“PAScarSide”)
Original label for object 3 “PAScarSide” : “carSide”
Bounding box for object 3 “PAScarSide” (Xmin, Ymin) – (Xmax, Ymax) : (199, 60) – (298, 99)

Annotation file contents for test-15.png

Approved for Public Release; Distribution Unlimited.
10

of each object type was used as the training set. The training set consists of images from the
folders Caltech_cars, Caltech_motorbikes_side, ETHZ_sideviews-cars, TUGraz_bike,
TUGraz_cars, and TUGraz_person.

Table 3. PASCAL VOC Dataset 2005 Statistics, Dataset 1

 motorbike-test test Training
 Images Objects Images Objects Images Objects
Testing 95 102 136 164 - -
Training - - - - 1066 1424
Select set 50 56 50 66 200 253

 Using OpenCV 2.3.1 and C++, we take advantage of the built-in functionality and have a

better processing time as compared to Java. To segment images we used OpenCV’s Sobel,
Canny, and Mean-Shift Segmentation implementations. Additionally, we used OpenCV’s object
recognition implementations of SIFT and SURF, which are the original patented versions.
OpenCV’s implementations of the methods require a few function calls, thus avoiding having to
reimplement them.

Even after making these decisions, the processing of the images is still lengthy. However,
this is expected. The program reads in the image as well as an annotation file for each training
image. This information produces the training segments. Throughout the rest of the report,
reference images, reference objects, or reference segments refers to training images, training
objects, or training segments respectively.

The test set has a similar process applied (Code Segment 1). An image and its annotation
file are read into the program to get the bounding box and the correct label for each object within
the image. Each segmentation algorithm segments the test image. The segment used as the test
segment is the one that most overlaps the bounding box around the actual object. Using a
combination of the minimum x and y coordinates and the maximum x and y coordinates of the
segment converts the segment into a box. The box-segment that most overlaps the object’s true
bounding box produced from the annotation file is the one used.

For every test segment there is a comparison to every reference segment. For each
combination of image segmentation algorithms and object recognition algorithms a comparison

imgFilepath = File path and name of image
annotFile = Get annotation file by using imgFilepath and replacing
“PNGImages” with “Annotations”
numObjects = Parse annotFile to get number of objects in file
For each object in annotFile
 objLabel = Parse out object's label
 bounds[] = Parse out coordinates of object's bounding box (min x and
y, max x and y)
 segment = Create a segment from bounds (only do if creating training
data)
 Create a data structure that holds label and bounds

Code Segment 1. Process for Creation of Test and Training Segments

Approved for Public Release; Distribution Unlimited.
11

is made. After the comparison, it tracks the label and how much the reference segment and test
segment have in common.

The object recognition approach used determines the method for determining how much
the reference and test segments have in common. Edge map approaches are naively calculated.
Starting at the top left of the segments as the origin and using smallest number of columns and
rows between the two segments is the area checked for common pixel colors. Therefore, for
each pixel within that area, if the intensity value of the pixel in the same position in the test
segment as the one in the reference segment is the same, then that is considered a match. The
number of matching pixels divided by the total number of pixels in the area determines the
similarity of the segments.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺 𝑓𝐶𝑓 𝑒𝑒𝑒𝑒 𝑒𝑒𝐶𝑒𝑑𝐶𝐶𝐶𝐶 𝐶𝑒𝐶ℎ𝐶𝑒𝑜 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑚𝑚𝑚ℎ𝑖𝑛𝑖 𝑝𝑖𝑝𝑛𝑝𝑝 (𝑛𝑚𝑝𝑛𝑏 𝑜𝑛 𝑚ℎ𝑛𝑖𝑛 𝑖𝑛𝑚𝑛𝑛𝑝𝑖𝑚𝑖)
𝑚𝑜𝑚𝑚𝑝 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑝𝑖𝑝𝑛𝑝𝑝 𝑖𝑛 𝑚ℎ𝑛 𝑚𝑛𝑛𝑚 𝑛𝑛𝑖𝑛𝑖 𝑚ℎ𝑛𝑚𝑒𝑛𝑏

 (2)

However, if SIFT or SURF is used for object recognition, then the measure of similarity is the
number of matches. A brute force matcher (or BruteForceMatcher in OpenCV) finds matches
based on Euclidean distance [12] and for better results, only the matches that are less than two
times the smallest distance among matches are kept.

d = Euclidean distance between a pair of key points
Commonality for SIFT and SURF = d < 2 ∗ minimum distance (of the matches) (3)

Since we aware that handling factors like rotation and scale are important to deal with
when using a real data set, we included Scale Invariant Feature Transform (SIFT) ([15], [17])
and Speeded Up Robust Features (SURF) ([11], [18]) for object recognition options. They are
exceptional in that they can handle images of different scales and rotations [19].

5. RESULTS AND DISCUSSION

It is wasted effort when an analyst or warfighter should have his/her focus on finding new
information, things not so easily discovered. As the Air Force Research Laboratory’s goal is to
help the analyst and warfighter, this effort only uses segmentation algorithms that do not require
user input as an analyst and warfighter have much data to go through. However, the
segmentation methods implemented tended to over-segment. The average number of segments
in the test object’s bounding box for Canny edge detection is 47, 2075 for mean-shift, and 538
for Sobel edge detection.

Approved for Public Release; Distribution Unlimited.
12

Looking at Figure 1, Figure 2, Figure 3, and Figure 4, you can see the segmentation

results for test image test-15.png where each color represents a segment; according to human
vision, we see they have imperfect segmentation. Consequently, the identification of the object
becomes more difficult. If the test segment is too small (includes a part of the object) or too
large (includes the object and one or more objects), then the measure of similarity will be
different if the test segment was just the object. Therefore, an imperfect test segment could lead
to an incorrect labeling.

In Figure 2, it appears that the majority of the image is one segment. Applying a

Gaussian blur smoothes the image as well as removes noise. Therefore, texture such as the
image’s ground, does not seem to be as big of an issue as for the other methods. As for the
imperfect segmentation, the edges may not have been thick enough or complete enough. The
algorithm itself creates thin edges. This is because of two of the three criteria for edge detector
performance, localized edge points (points marked as edges by detector and the center of a true
edge should have a minimum distance between them) and single edge point response (the
detector should not identify multiple edge pixels where only a single edge point exists) [2].
Nevertheless, this may exacerbate the issue because of the thresholds used for the hysteresis.
The thresholds are parameters for the method used by OpenCV. One set of thresholds may work
for one image, but not another. One way to thicken edges is to use mathematical morphology
([20]), specifically the dilation operation.

Figure 1. Original image, test-15.png in test set [16]

Figure 2. Canny edge detection applied to test-15.png

Approved for Public Release; Distribution Unlimited.
13

Figure 3 shows the mean-shift results. Once again, the segmentation is imperfect; a

possible reason for the flawed segmentation is the parameters given to the OpenCV functions.
Like Canny, the variables to the mean-shift functions could work well for one image and not
another.

Figure 4 is the output for Sobel edge detection. An advantage of Sobel is the twos in the

filters, which provides some smoothing; however, the image could use additional smoothing
before applying the operators. In addition to the smoothing or instead of, applying a threshold to
the gradient image (the product of Sobel edge detection) is beneficial. Using both methods
would reduce the textured look of the image by keeping the most prominent edges.

 If the segments are imperfect, this could lead to error in the object recognition process.
The metrics used are:

 𝑃𝑓𝑒𝑑𝐶𝑜𝐶𝐶𝐶 = 𝑛𝑛𝑝𝑟𝑛𝑟𝑝 ∩ 𝑛𝑛𝑚𝑟𝑛𝑟𝑝
𝑛𝑛𝑚𝑟𝑛𝑟𝑝

 (4)

 𝑅𝑒𝑑𝐶𝐶𝐶 = 𝑛𝑛𝑝𝑟𝑛𝑟𝑝 ∩ 𝑛𝑛𝑚𝑟𝑛𝑟𝑝
𝑛𝑛𝑝𝑟𝑛𝑟𝑝

 (5)

 𝐹 −𝐶𝑒𝐶𝑜𝑚𝑓𝑒 = 2 ∗ 𝑝𝑛𝑛𝑚𝑖𝑝𝑖𝑜𝑛 ∗ 𝑛𝑛𝑚𝑚𝑝𝑝
𝑝𝑛𝑛𝑚𝑖𝑝𝑖𝑜𝑛 + 𝑛𝑛𝑚𝑚𝑝𝑝

 (6)

In equations (4) and (5), relObjs is the number of objects with the type that is the current focus.
For instance, if the test set has 30 motorbike objects, then relObjs is 30. retDocs is the number of

Figure 3. Mean-shift applied to test-15.png

Figure 4. Sobel edge detection applied to test-15.png

Approved for Public Release; Distribution Unlimited.
14

objects assigned the type being looked at. For example, if of all the objects in the test set 20 of
them received the label bike, then retDocs for bike would be 20. Looking at Table 3, it shows
that the performance is poor for the most part.

Table 4. Precision, Recall, and F-measure for All Combinations Using Loose Labeling
 Canny Mean Shift Sobel

 Sobel Canny SIFT SURF Sobel Canny SIFT SURF Sobel Canny SIFT SURF
 Object = motorbike
Precision 0.35 0.00 0.44 0.15 0.35 0.04 0.38 0.05 0.45 0.79 0.44 0.41
Recall 0.52 0.00 0.57 0.04 0.54 0.02 0.55 0.04 0.96 0.55 0.88 0.82
F-measure 0.42 0.00 0.50 0.06 0.42 0.02 0.45 0.04 0.61 0.65 0.59 0.55

 Object = car
Precision 0.33 0.67 0.00 1.00 0.29 1.00 1.00 0.50 0.00 0.88 1.00 0.00
Recall 0.20 0.06 0.00 0.05 0.15 0.11 0.02 0.02 0.00 0.32 0.02 0.00
F-measure 0.25 0.11 0.00 0.09 0.20 0.19 0.03 0.03 0.00 0.47 0.03 0.00

Additionally, by observation of the results in Table 3 (where green is the best performance for the
measure), no combination has the best performance for all three metrics. Conversely, F-measure

indicates that the combination of Sobel for image
segmentation and Canny for recognition is best.

Table 4 is the “overall performance” of each
combination, which means the number of correctly
labeled test segments divided by the total number of
test segments. Based on this metric, using Sobel for
segmentation and Sobel for object recognition has
the best performance. Despite the combination
having the best performance, labels of less than a
half of the test segments were correct.

6. CONCLUSION

Looking at the numbers produced by the
metrics in Table 3, we can see that no one
combination out does the others for all three
metrics. Additionally, according to Table 3 and F-
measure (which considers both precision and
recall), we should use Sobel for segmentation and
Canny for recognition.

If we only consider the number of test
segments correctly labeled divided by the total
number of test segments, then that clearly indicates
the combination of Sobel and Sobel. Despite being
the clear winner in that case, the combination only
performed so well because of the number of
correctly labeled motorbikes. Looking at Table 3,
we can see that using SIFT and SURF on cars did

not work well. Additionally, the performance was not stellar according to Table 4; labels of less
than half of the test segments were correct. Such results would not be useful to an analyst or
warfighter.

Table 5. Performance

Performance – Strict (%)

 Canny Mean Shift Sobel

Sobel 23.77 24.59 44.26

Canny 0.00 1.64 29.51

SIFT 26.23 25.41 40.98

SURF 3.28 2.46 37.70

Performance – Loose (%)

 Canny Mean Shift Sobel

Sobel 34.43 32.79 44.26

Canny 3.28 6.56 42.62

SIFT 26.23 26.23 40.98

SURF 4.10 2.46 37.70

Strict means that the view as well as
the object type had to be correct.

Whereas with loose, only the type of
the object had to be correct.

Approved for Public Release; Distribution Unlimited.
15

 Despite the performance of the combinations used in this effort, there are plenty of other
algorithms to try. As mentioned previously, there are multiple categories within image
segmentation and object recognition and each of those categories have one or more algorithms.

7. FUTURE WORK

Through research for this effort, there are two key things to focus on for improvement,
implementations and data sets.

Most of OpenCV’s implementations of the methods require parameters. These
parameters could be partially hindering performance. Still, tweaking parameters only gets us so
far and finding well performing parameters generic enough to work on all possible cases is near
if not impossible. Another opportunity for future work is to implement other segmentation and
object recognition algorithms. Since the input for the object recognition methods comes from
segmentation, we would look at segmentation algorithms first. Furthermore, we could explore
machine learning approaches like k-nearest neighbor or neural networks to possibly improve
precision, recall, and F-measure.

Additionally, the best way of choosing which label associated with a reference image is
best for the test segment could use some exploration since there is a multitude of ways to do this.
For instance, when using SIFT and SURF, Manhattan distance could be used instead of
Euclidean to determine matching key points. Another thing to try is to use a distance formula to
decide if pixel values match when using edge detection methods. An additional approach of
choosing a label could be applying checks for rotation and scaling to the edge detection methods.

The results of this effort indicate that the combination to use is Sobel for image
segmentation and Canny or Sobel edge detection for object recognition. To further support this
result, a more varied data set would be useful since the data set used for this effort only had two
types for the test segments, motorbikes and cars. Another variation to add to the test set is
images with rotated objects. An additional problem is occlusion (and includes its own set of
algorithms); addressing this problem is important because not all objects will be unobstructed in
the images. The test set does contain images with occlusion; however, the segmentation and
recognition algorithms implemented do not directly deal with this issue.

Finally, a potential experiment to improve performance is to use video or sequence of
images. By taking this approach, we could then get an average over several images or frames to
determine an object’s label.

Approved for Public Release; Distribution Unlimited.
16

8. BIBLIOGRAPHY

[1] J. Prewitt, "Object enhancement and extraction," Picture Processing and Psychopictorics,

vol. 75, 1970.
[2] R. Gonzalez and R. Woods, Digital Image Processing, Upper Saddle River: Pearson Prentice

Hall, 2008.
[3] I. Sobel, "Camera models and machine perception," Stanford University, Palo Alto, 1970.
[4] D. Marr and E. Hildreth, "Theory of edge detection," Proceedings of the Royal Society of

London, vol. 207, pp. 187-217, 1980.
[5] J. Canny, "A computational approach to edge detection," IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vols. PAMI-8, no. 6, pp. 679-698, 1986.
[6] "Segmentation (image processing)," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Segmentation_(image_processing).. [Accessed 16 October
2012].

[7] M. Treiber, An Introduction to Object Recognition: Selected Algorithms for a Wide Variety
of Applications (Advances in Computer Vision and Pattern Recognition), Springer, 2010, p.
6.

[8] "Hysteresis," Merriam-Webster, Inc., [Online]. Available: http://www.merriam-
webster.com/dictionary/hysteresis. [Accessed November 2012].

[9] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 603-619,
2002.

[10] U. Sinha, "SIFT: Scale invariant feature transform," AI Shack, 14 May 2010. [Online].
Available: www.aishack.in/2010/05/sift-scale-invariant-feature-transform/. [Accessed
October 2012].

[11] H. Bay, T. Tuytelaars and L. Gool, "SURF: Speeded up robust features," Computer Vision -
ECCV 2006, vol. 3951, pp. 404-417, 2006.

[12] The OpenCV Reference Manual Release 2.3, 2011.
[13] E. Sudderth, A. Torralba, W. Freeman and A. Willsky, "Describing visual scenes using

transformed Dirichlet processes," Advances in Newural Information Processing Systems 18,
pp. 1299-1306, 2005.

[14] Y. Teh, "Dirichlet process," in Encyclopedia of Machine Learning, Springer, 2010, pp. 280-
287.

[15] D. Lowe, "Object recognition from local scale-invariant features," The Proceedings of the
Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150-1157, 1999.

[16] M. Everingham, A. Zisserman, C. Williams, L. Gool and et al., "The 2005 PASCAL Visual
Object Classes Challenge," [Online]. Available:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2005/. [Accessed 2012].

[17] D. Lowe, "Method and apparatus for identifying scale invariant features in an image and use
of same for locating an object in an image". U.S. Patent 6711293, 23 March 2004.

Approved for Public Release; Distribution Unlimited.
17

[18] R. Funayama, H. Yanagihara, L. Gool, T. Tuytelaars, H. Bay and et al., "Robust interest
point detector and descriptor". U.S. Patent 2009238460, 24 September 2009.

[19] "Scale-invariant feature transform," Wikipedia, [Online]. Available:
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform. [Accessed 16 October
2012].

[20] R. Haralick, S. Sternberg and X. Zhuang, "Image analysis using mathematical morphology,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vols. PAMI-9, no. 4, pp.
532-550, 1987.

[21] "The PASCAL Visual Object Classes Homepage," [Online]. Available:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/. [Accessed 5 March 2013].

Approved for Public Release; Distribution Unlimited.
18

APPENDIX

Below is a subset of images from the data set for visual reference. All images in the
appendix come from [16]. According to [21], most images in the data set are from existing
public data sets.

Figure 5. motorbikes002.png From Test Set

Figure 6. motorbikes044-rt.png From Test Set

Approved for Public Release; Distribution Unlimited.
19

Figure 7. motorbikes048-rt.png From Test Set

Figure 8. test-0.png From Test Set

Figure 9. test-31.png From Test Set

Approved for Public Release; Distribution Unlimited.
20

Figure 10. 0002.png From Training Set

Figure 11. 0025.png From Training Set

Approved for Public Release; Distribution Unlimited.
21

Figure 12. 0046.png From Training Set

Figure 13. 29091-sml.png From Training Set

Figure 14. 354002-sml.png From Training Set

Approved for Public Release; Distribution Unlimited.
22

Figure 15. bike_002.png From Training Set

Figure 16. bike_005.png From Training Set

Approved for Public Release; Distribution Unlimited.
23

Figure 17. bike_008.png From Training Set

Figure 18. bike_014.png From Training Set

Approved for Public Release; Distribution Unlimited.
24

Figure 19. car-pic40-sml.png From Training Set

Figure 20. carsgraz_001.png From Training Set

Approved for Public Release; Distribution Unlimited.
25

Figure 21. carsgraz_006.png From Training Set

Figure 22. person_002.png From Training Set

Approved for Public Release; Distribution Unlimited.
26

Figure 23. person_005.png From Training Set

Figure 24. person_020.png From Training Set

Approved for Public Release; Distribution Unlimited.
27

Figure 25. person_048.png From Training Set

Approved for Public Release; Distribution Unlimited.
28

LIST OF ACRONYMS

LoG Laplacian of Gaussian
PASCAL Pattern analysis, statistical modeling, and computational learning
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
VOC Visual Objects Challenge

	LIST OF FIGURES
	LIST OF TABLES
	1. SUMMARY
	2. INTRODUCTION
	2.1. Sobel Edge Detection
	2.2. Canny Edge Detection
	2.3. Mean Shift Filtering
	2.4. Scale Invariant Feature Transform (SIFT)
	2.5. Speeded Up Robust Features (SURF)

	3. MOTIVATION
	4. METHODS, ASSUMPTIONS, AND PROCEDURES
	The training and test set of images come from the PASCAL (pattern analysis, statistical modeling, and computational learning) Visual Objects Challenge (VOC) 2005. VOC 2005’s training set contains images of motorcycles (from various angles), cars (fro...
	5. RESULTS AND DISCUSSION
	6. CONCLUSION
	7. FUTURE WORK
	8. BIBLIOGRAPHY
	APPENDIX
	LIST OF ACRONYMS

